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I. Introduction

The general goal of this project is to study the implications of the
large scatter associated with composite strength properties to the reliability
of aircraft structures. Certain components of an aircraft are considered as
arranged either in series, or in parallel. Based on realistic distribution
parameters for composite material, the reliability of a fleet of aircraft is
calculated. Emphasis is put on static strength but implications to fatigue
life are discussed briefly.

For metal structures, the main concern on reliability is fatigue failure,
not static failure. This is because reliability is the problem only when the
failure life, or strength, has a large scatter. If the material behaves in a
determihistic way, where values of failure stress and fatigue life are finite
numbers for all specimens in the same population, there would be no reliability
problem. The deterministic way of specifying limit load, allowable stress, and
factor of safety would be sufficient.

For metal, the scatter in static strength is small, with Weibull shape
parameter larger than 20. The scatter in fatigue life, on the other hand, is
large, with shape parameter in the range of 2 to 5. Therefore, for metal,
fatigue reliability is of most concern; static load poses no serious reliability
problem.

For composite materials, however, the scatter for both static strength
and fatigue life is large (see Fig. 1). The shape parameter for composite
static strength is in the neighborhood of 10, and less than two for composite
fatigue 1ife. Thus, it is necessary to study the reliability of both static

failure and fatigue failure for composites.
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In Section II, a brief review of the current status of structural re-

liability is given. A few points particularly relevant to this study are

mentioned. Section III gives the static load reliability. Parametric cal-
culations are made with series-parallel arrangements. The parameters used
are the number of components in an aircraft and the number of aircraft in a

fleet. A factor of safety is defined and its values calculated. In Section

IV, a brief account of fatigue case is presented. Conclusions and recommenda-

tions are given in Section VI.
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II. Current Status of Structural Reliability

A detailed review of current structural criteria as specified by the
Department of Defense, as well as a few proposed approaches to the structural
criteria for composite material airframes is given by Manning, et al. [1].

The current USAF structural requirement, as contained in MIL-STD-1530, [2],
and MIL-A-8860, [3], is explained in a paper by Haviland and Tiffany [4].
Recently, Weinberger, Somoroff and Riley [5] presented the criteria for Naval
production composite aircraft structures. We shall mention here a few of the
points in these criteria that are relevant to this study.

The current criteria are basically deterministic, and are originally for
metal structures. For static loads, the limit load is defined as the maximum
operational load expected to be encountered. The ultimate load is equal to the
limit load times a factor of safety, which is generally not less than 1.5.

Two allowable stresses are used (MIL-HDBK-5) [6], for primary structures the

"A" allowable is used, (at least 99% of the population must have values above

the A-allowable with 95% confidence). For secondary structure, the B-allowable
is used, (at least 90% of the population must have values above the B-allowable
with 95% confidence). The material yield allowable stresses shall not be
exceeded at the limit load level; the material must sustain ultimate load without
failure. The fatigue load spectrum should be based on the planned operational
usage of the vehicle. The fatigue life of the structure must exceed one ser-
vice life-time multiplied by a scatter factor. The scatter factor used by the
USAF 1is 4, or larger, under average load spectrum. The U.S. Navy uses a

scatter factor of 2 under extreme load spectrum.

—
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The cur:ent criteria recognize that aircraft structure has small flaws,
defects, and cracks at delivery. To ensure that the structure will last the
required service life, two damage tolerant design approaches are available,
the fail-safe approach, and the slow-crack growth approach.

- In the fail-safe approach, unstable crack growth is locally con-

tained by multiple load paths, or crack stoppers.

- In the slow-crack growth approach, the cracks are prevented from
attaining the critical size for unstable rapid propagation during
the life of the structure, or between inspection intervals.

Among the few proposed structural criteria, we shall mention the concept
of "time-to-first failure" proposed by Freudenthal [7] [8], and the concept
of treating the reliability at three levels: the components, the structure,
and the fleet, as proposed by Rogers, et al. [9] (the so-called NASA Monograph
Rationale) .

Freudenthal's concept is that among a fleet of identical aircraft, the
first catastrophic failure of one aircraft is of most concern. Therefore, the
expected time to first failure is used instead of the current practice
mean time to failure. The reliability of the fleet is dependent on the fleet
size. If each aircraft in the fleet has a fixed and identical reliability,
then the larger the fleet size, the smaller the expected time to first failure,
which can be calculated by the weakest-link theory, or extreme-value distribu-
tion theory.

In Roger's approach, the reliability of the fleet is calculated from that
of the aircraft, which in turn is calculated from the reliability of the combo-
nents of the aircraft. (It also stipulates that the component can be further

divided into subcomponents and elements. The method of calculation from one

STV (m), 3
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level to the next is always the same). The reliability of the fleet is calcu-
lated by the weakest-link theory; if one of the aircraft in a fleet fails, the
fleet is considered '"failed." We shall call this an in-series model. They
treated the relation between aircraft reliability and the component reliability 1
in the same manner, that is, if one component fails, the aircraft is considered
failed. This is again an in-series model. No redundant component is considered.
Nor are fail-safe measures, such as multiple load path and crack stoppers, con-
sidered in the reliability calculation.

We may also mention that the concept of treating reliability by levels of
aircraft, component, subcomponent and element is used by the Navy and mentioned
by Weinberger, Somoroff, and Riley in [5]. Other pertinent work on aircraft
reliability may be found in Refs.[l0]-[13]. In[13], Lemon and Manning give a
brief overview of the structural reliability problem, and a list of selected
references. This list includes all relevant articles on structural reliability

up to 1974.

é
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III. Static Load Reliability

For this study, we shall consider a fleet of n aircraft. We are inter-
ested in the weakest aircraft in the fleet. We shall calculate, with a certain
reliability (say 95%), the strength of the weakest aircraft; or the load that
will fail the weakest aircraft with 952 probability.

We shall study the strength of a primary structure of the aircraft, such

as wing torque box, stabilizer, or fuselage. Failure of this structure is con-
sidered fatal to the aircraft. This structure consists of m components.
For the wing torque box, the components could be the spars. Figure 2 shows a
typical wing box structure of the advanced Harrier and its spars. For simplicity,
we shall assume the m components are arranged either in-series, or in-parallel.
For the in-series arrangement, if one component fails, the whole structure and thus,
the aircraft fail. In the in-parallel case, if one component fails, the other
components can still support. the load. The parallel arrangement is essentially
the multiple-load path, crack stopper, or redundancy approaches in "damage toler-
ance." In actual cases, the components are in a combination of series-parallel
arrangements. For instance, the spars of the Harrier wing torque box can sus-
tain the limit load after one aﬁxiliary spar fails. We shall also assume the
load is of a fixed value (deterministic) and the components are independent. A
summary of the series-parallel arrangement is given in Table I.

The strength of the component is assumed to be of two-parameter Weibull

distribution, or

Folo) =P(Z <0) =1~ em[-(c,i)a] (1)
where "
L = component strength random variable
o = value of I
F = cumulative distribution function
P = probability

og = scale parameter (characteristic strength of component)

a = gshape parameter

6
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If the m components are in-series, the distribution of strength of the structure

is
F}:m(a) = ] - expl- m(aga-)a ] (2)

If the m components are in-parallel, the strength distribution of the structure

cannot be expressed in simple form. For small values of m, the exact distribu-
tion can be calculated numerically. In Ref. [14], equations for the distributions

for values of m up to seven are presented; they are based on the uniform sharing
of load by surviving components (no stress-concentration).

In Ref. [15], the bundle strength distribution has also been expressed in
a recursion formula, (Eq. 9.2). We have used this formula and calculated the
in-parallel distribution for values of m up to 20. For the case of m = 50, we
used -the simplified large bundle equation of Daniel. Symbolically, we may ex-

press the strength distribution of a structure with m in-parallel components as
Fzm,(o) = function(u,os,n) (3)

The strength of the aircraft will be considered the same as the strength
of this structure. We are interested in the weakest in a fleet of n aircraft.
The distribution of strength of this weakest aircraft in terms of the parameters

of the component is

Fom = 1 - exp[- m(-;:y ] 4)
for m in-series components, and
Foooo = 1= [1-F (@] (5)

for m in-parallel components.

For a certain value of reliability, the strength of the weakest-of-the-

fleet can be calculated. We shall consider 95% reliability in this derivation.
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Let

g strength of the weakest aircraft in the

fleet with 95% reliability, (6)

then, for the in-series case,

a
th = 0.05 =1 - exp[- m(;:f) ] 7

or
o 1/a
ot - .1, 1
Yoy lm (5753 e s
For the in-parallel case,
n
1- Fzm. (owf)] = 0.95 9

In figures 3, 4, and 5 we have plotted the cumulative distribution of
strength of the component Fz, with a = 10. Also plotted are the strength

distribution of the aircraft with seven components either in-parallel, an"

or in-series, F The distributions of the weakest of 100 aircraft, F

Im’ Zmn

and F, , , are shown in Figures 4 and 5.

Im'n

Calculations of cwf/o3 are made for a = 2,5,10, and 20 and m = 7,20,
and 50 for both in-series and in-parallel arrangements. These results are

plotted in Figures 6 to 1l as cwf/c versus curves.

B
In order to gain more insight, let us define a Factor of Safety (F.S.)

as
%0.95
Factor of Safety = —— (10)
Ouf
where o is the strength that 952 of the component will exceed, or

0.95

o a
0.95 = exp[-(-—g-'—g—S) § s an’
B
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It may also be considered as the allowable stress of the component. In general,
a designer will use this as the strength, and will not apply a stress that will
exceed this. Now, due to the series arrangement of the aircraft in the fleet,
the weakest of the fleet has a strength much less than the 95% reliability
strength of the component, %9.95° °F Ouf < %.95° The ratio 00.95/°wf' which
we call F.S., is the factor of safety required, such that no failure of the
fleet would occur with 952 reliability. Looking at it another way, if the
applied stress is restricted to

applied stress :-00.95/F's'

then
applied stress S-wa .

This would assure that no failure of the fleet with 952 reliability.

We have used 952 reliability for illustration purposes. For other values
of reliability, such as 99%, similar calculations can be made.

The factor of safety as defined above is plotted as a function of n in
Figures 12 and 13. We have used m = 7, or seven components in the structure,
which closely simulates the eight spars in the Harrier wing torque box. 1In
Figure 12, a value of a = 20 is used, which is representative of the shape
parameter of static strength of metal structures. Two curves are plotted, one
for in-series arrangement, one for in-parallel. As mentioned before, the actual

arrangement is a combination of these two, represented by points within the

area between these two curves. It can be seen that the present practice of using

a factor of safety of 1.5 is sufficient to ensure no failure for a few thousand

aircraft in the fleet.

The dotted line in Figure 12 is plotted with the assumption that the shape

parameter of the aircraft is the same as that of the component. It may also be

considered as an aircraft with only one component. The characteristic strength,

e
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OB’ is used in the formula, instead of the 95% reliable strength 9.95"

It can be seen that a larger factor of safety would be required in this case.
We labled this curve by Freudenthal, because it follows the basici?pproach
he used for the'fatigue case.

Figure 13 shows similar curves for a shape parameter of 10, typical for
strength of composife materials. Here, a factor of safety of 1.5 is adequate
for a few thousand aircraft in the fleet if the components are essentially
in-parallel. Thus, it is seen thaﬁ it is more important to have multiple load

path, or crack stopper in composite material structures than in metal structures.

E{ 10
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! IV. Advantage of In-Parallel Arrangement

From an engineering point of view, it is obvious that a structure with
multiple load path is more desirable than a structure with a single load path.
The former is "fail-safe'; after one load path fails, the rest of the structure

can still support the load. Statistically, this is the in-parallel arrangement.

——_—

The single load path structure is an in-series arrangement. The advantage of the

in-parallel arrangement can be expressed in quantitative terms. There are

b

two advantages, first, the structure with parallel components has a higher value
of shape parameter than the component. In other words, the structure has less
scatter in its strength value. This is shown in Figure 14, where the shape
parameter of the aircraft (or structure) is plotted in terms of the number of !
components, for both in-series and in-parallel arrangements. It can be seen
that for the series arrangement the shape parameter remains unchanged. For the :
parallel case, the shape parameter increases with the number of components.

This high value of shape pirametet will increase the strength of the weakest air-
craft in the fleet. Note that the strength distribution of the aircraft with
parallel components is not a Weibull distribution, and does not have a clearly
defined shape parameter. Here, we have calculated the coefficient of variation

of the aircraft strength distribution and used the formula curve in Figure 1

to get & valué of an equivalent shape parameter for comparison.

The second advantage of the parallel arrangement is that the high reliable
strength (952 or higher) of the structure may be larger than that of its component.
In general, the characteristic strength of the structure is smaller than that
of its component, as can be seen from Figure 3. However, for certain values of
o and m, the 957 reliable strength of the structure may be higher than the

00.95 of the component.

11
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In Figure 15, it can be seen that for a = 10 and m = 100, the value of the

95% reliable strength of the aircraft, & et is larger than o For a

0.95°

value of component shape parameter a of 2, the 95% reliable strength NS is

always larger than o (= = for m = 1), as shown in Figure 16.

0.95
To summarize, the parallel arrangement has less scatter (steeper cumulative

distribution curve), and has a larger 95% (or 992) reliable strength, as com-

pared to the component.
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V. Fatigue Reliability

For the in-series arrangement, the formulas for the fatigue case are the

same as those for the static case. For the parallel arrangement, the fatigue

e

situation is more complicated than the static case. We shall present here

results of a preliminary investigation.

We assume that the S-NB curve of the component is known, where S is the

maximum stress of the fatigue load and N, is the characteristic value of the

]
fatigue life. Also, the life distribution at a given stress level is assumed

to be a two-parameter Weibull, or
N\
F(N) = 1 - exp[-(N—' | B
8

For simplicity, we shall also assume that the shape parameter is the same at

all stress levels, and only the scale parameter, or characteristic life NB’

f changes with the stress level.

Figure 17 shows a typical S-N_, curve. Let us consider a structure with

8
seven components in parallel. Under the initial stress S, the characteristic

life of the components is N After one component fails, the stress level is

80
; increased to 7S/6, and the corresponding characteristic life is Nel. After

three component failures, the stress in the remaining is 7S/4, and the

characteristic life NB3' With this information, and the recursion formula given

Aitét.:t allu L Woo

A i e i A

by Daniel, we have calculated the life distribution of the aircraft with m
component either in-series, or in-parallel. The life of the weakest in a fleet

of n aircraft is also calculated. 2

e g

We shall define ;he Scatter Factor (S.F.) as

. No.9s

wa

s.F.

13
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where

N0 95 = 95% reliable life of the component

wa = 957 reliable life of the weakest in a fleet of n aircraft
Note that Freudenthal used the characteristic life NB’ instead of N .g5* as his
definition of scatter factor, and he.did not consider the aircraft as consisting ;
of m components. He used a shape parameter of 4 for the aircraft fatigue life,
which is overly conservative. The shape parameter for metal specimens is around
4; the shape parameter of the aircraft with more than one component in parallel
must have a shape parameter of more than 4.
In Figure 18, we have plotted the scatter factor for seven components with
a shape parameter of 4. In this case, the series and parallel arrangement
curves are not distinguishable. For a fleet of 100 aircraft, from our analysis
an S.F. of 5 would be adequate, whereas Freudenthal's approach requires a value

of 7. 1In Figure 19, we have plotted the S.F. for 20 components. For a fleet

of 100 aircraft, a S.F. of 4 is just adequate for the in-parallel arrangement.
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VI. Conclusions and Recommendations

1. In comparison with metals, composite materials have more scatter in
static strength and fatigue life. Thus, more extensive statistical study is

needed for reliability of composite structures, than for metals.

2. The current damage tolerance design i~ using multiple load paths and

crack stoppers is statistically in-parallel arrangement of components, The

reliability of aircraft structures with this type of design can be calculated

quantitatively, and should be done in the future.

3. Freudenthalwas overly pessimistic. He did not realize the benefit of
the 1h-paralle1 arrangement. The shape parameter of the structure can be
larger than that of the component. Unnecessarily high values of scatter

factor are not needed.

4. A large panel can be considered as made up of many small "coupons."
These coupons are in a combination of series-parallel arrangements. The shape
parameter of the panel most likely is larger than that of the coupon. This

effect should be studied.

15




NADC-78094-60

| VII. References

!
L |
k1 1.
k|

20'

3.
i 4.
k[ S 5.
i 6.
7.

8.

10.

13.

12,

Hamfing. S.D., Lemon, G.H., and Bouton, I., "Study of Structural
Criteria for Composite Air Frame," Vol. II Current Criteria, Air Force
Flight Dynamics Lab. TR -73-4, AD 767 707, April 1973.

MIL-STD-1530A (11), "Military Standard, Aircraft Structural Integrity
Program, Airplane Requirement," Department of Defense, Dec. 1975.

MIL-A-8860A, "General Specification for Airplane Strength and Rigidity,"
(USLF), 31 March 1971.

Haviland, G.P. and Tiffany, C., "Understanding the USAF Structural
Irtegrity Program," Astronautics & Aeronautics, July 1973, pp. 67-70.

Weinberger, R.A., Somoroff, A.R., and Riley, B.L., "U.S. Navy Certification
of Composite Wings for the F-18 and Advanced Harrier Aircraft," AIAA/ASME
18th: Structures, Structural Dynamics & Materials Conf. San Diego, Calif.
March 21-23, 1977, pp. 396-407.

MIL-HDBK-5C, "Military Standarization Handbook, Metallic Materials and
Elements for Aerospace Vehicle Structures," Superintendent of Documents,
Governmeat Printing Office, Washington, D.C., Sept. 1976.

Schueller, G.I., and Freudenthal, A.M., "Scatter Factor and Reliability
of Aircraft Structures," The George Washington University, Washington,
D.C. for Langley Research Center, NASA CR-2100, Nov. 1972.

Freudenthal, A.M., "The Scatter Factor in the Reliability Assessment of
Alrcraft Structures," J. Aircraft, Vol. 14, No. 2, Feb. 1977.

Rogers, C.W., et al, "Design Criteria Moﬁograph on Advanced Composite
Structures,' Review Draft, prepared by General Dynamics, Convair
Aerospace Div., Fort Worth Operation, 15 December 1972.

Whittaker, I.C., and Besuner, P.M., "A Reliability Analysis Approach to
Fatigue Life Variability of Aircraft Structures," AFML-TR-69-65, April

- 1969.

COMPOSITE RELIABILITY, A symposium presented at Las Vegas, Nev. ASTM
SIP 580, Symposium Chairman, E.M. Wu, Washington University, April
1974,

Mann, Nancy R., Schafer, R.E., and Singpurwalla, N.D., METHODS FOR

STATISTICAL ANALYSIS OF RELIABILITY AND LIFE DATA, John Wiley and
Sons, 1974. .

16

e o e R

N S ———————




NADC-~78094-60

13. Lemon, G.H. and Manning, S.D., "Literature Survey on Structural Reliability,"
IEEE Transactions on Reliability, Vol. R-23, No. 4, Oct. 1974,

14. Chou, P.C. and Croman, R., "Certification of Composite Aircraft Structures
under Impact, Fatigue and Environmental Conditions; Part II, Scale Effect
in Fatigue of Composite Materials." Naval Air Development Center Report

: N62269-76-C-0378, January 1978.

I m—

15. Daniels, H.E., "The Statistical Theory of the Strength of Bundles of
Threads, I," Proceedings of the Royal Society of London, Ser. A.,
Vol. 183, June 1945, pp. 405-435.

K SR SR G S USRI ST

I e Al

DA PR T gt T




NADC-78094-60

salnjnJys abae|
0} uodnod }s3)

diys bujuayos

HUF A ERE]
\

{
1

Jaddojsysead -
* pada1anap ;
2q 0} AJoay) 84njnJjs juepunpal «
ool eI s s ue i
alpung-J1je}s -shyd maasm_m .| MHGHEIR m=_>_>.=._m
193]}
: ; e ul Jesodie ¢ ~
co:m:g *S|iej SsjusawWa|ad
ajdwis jeldajew ajniaq - S}l JO BUO UYM §INIWT $3143s-U}
‘K10ayy yul| SaLJas-Ul |  pajie) paLapIsu0d | o e e
)sayeam | AjjeaisAyd sjuswaja SI Jlun ajeym ay) ]
Sjuawabuess
suojjenna soidi sidisitia uoijejuasaadal u "
pue AJoay| _ i 1PULd |eaiyded sainjead

SjuawWal3 Jo sjuawabuesdy |ajjesed pue Saias jeonsHE)S I alqel

18




S iy iy s A A S A S M AN B 0L : s~ WL o e RS

|
]
Coefficient of Variation, ;
; CN. %
1 800 |- :
1 500 |-
4 0.94
| 300 k- C. V. = (1/a)
E |
&
200 C. V. = standa::‘:eviation
1
1
b |
‘ 50 -
!
] 30
i 0 Fatigue |
3
| 10 |- I |
é Composite ! |
P | {
i 5 - | Metal I
G el
| 2 3 l \ |
| : | | [P | Metal |
} | ! I m—— ~=
3 1 | N ! 1 ik i A 1L 1 4 l Lo

0.1 0.6 1.0 2.0 3.0 5.0 10 20 30 50 80

Shape Parameter

Figure 1. Relation Between Shape Parameter and Coefficient of Variation
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Figure 2. A Typical Primary Structure (Wing Torque Box) of
the Advanced Harrier, and its Components (spars).
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